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Abstract

Many challenging partially observable reinforcement learning
problems have sparse rewards and most existing model-free
algorithms struggle with such reward sparsity. In this paper,
we propose a novel reward shaping approach to infer the intrin-
sic rewards for the agent from a sequential generative model.
Specifically, the sequential generative model processes a se-
quence of partial observations and actions from the agent’s
historical transitions to compile a belief state for performing
forward dynamics prediction. Then we utilize the error of the
dynamics prediction task to infer the intrinsic rewards for the
agent. Our proposed method is able to derive intrinsic rewards
that could better reflect the agent’s surprise or curiosity over
its ground-truth state by taking a sequential inference proce-
dure. Furthermore, we formulate the inference procedure for
dynamics prediction as a multi-step forward prediction task,
where the time abstraction that has been incorporated could
effectively help to increase the expressiveness of the intrinsic
reward signals. To evaluate our method, we conduct extensive
experiments on challenging 3D navigation tasks in ViZDoom
and DeepMind Lab. Empirical evaluation results show that
our proposed exploration method could lead to significantly
faster convergence than various state-of-the-art exploration
approaches in the testified navigation domains.

Introduction
Reinforcement learning is a formalism for autonomous agents
to learn meaningful task skills through the execution of
exploration-exploitation, driven by the reward signals issued
by the environment (Sutton and Barto 1998). When such
reward signals are sparse, it would be difficult for the agent
to progress in grasping meaningful task skills. Unfortunately,
many reinforcement learning problems come with sparse re-
wards, such as navigation, robotics control and video games
playing. For instance, in many navigation domains, the agent
only receives a single positive reward upon reaching the
target location. Thus the agents trained under such reward
sparsity would easily get stuck into a local state space, such
as bumping into a wall, and thus become unable to make
efficient progress for policy learning.

One inherent reason that leads to the struggle of existing
algorithms with such reward sparsity is that initially, agents
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trained with those approaches could hardly stumble into a
reward/goal state by chance, when executing their simple
exploitation-exploration strategies (Pathak et al. 2017). There-
fore, it is crucial to develop an efficient exploration mecha-
nism to encourage the agent to continuously search through
the state space in seek of reward gaining experience. From
the existing reinforcement learning literature, one prominent
line of solutions for promoting the exploration behaviors of
the agent is via reward shaping (Singh 1992; Dorigo and
Colombetti 1994; Barto, Mirolli, and Baldassarre 2013). In-
spired by the animal learning theory, the reward shaping
approaches mostly put the effort of identifying observations
that are novel or surprising as the key factor that drives ef-
ficient learning (Barto, Mirolli, and Baldassarre 2013). As
such, many of the existing works focus on developing some
additional reward model to generate intrinsic reward signals
as a measure of the novelty or surprise of the agent over a
state (Schmidhuber 1991; Singh, Barto, and Chentanez 2004;
Oudeyer, Kaplan, and Hafner 2007).

Since many of the well-adopted exploration methods from
the conventional reinforcement learning literature, such as
the UCB-type algorithms (Lai and Robbins 1985; Garivier
and Cappé 2011), work well with tractable MDPs but are not
straightforwardly applicable to deal with the tasks with high
dimensional state space, it is a non-trivial task to develop
an effective reward shaping method for deep reinforcement
learning problems. When considering the problems under a
partially observable setting, the challenge of developing an
effective intrinsic reward system becomes even more severe,
as it is extremely difficult to infer the novelty of the agent
over its true MDP state given only partial observations. In
recent years, there are a number of reward shaping explo-
ration approaches emerged for deep reinforcement learning,
which have brought significant performance improvement
over many popular benchmark tasks (Pathak et al. 2017; Savi-
nov et al. 2019; Pathak, Gandhi, and Gupta 2019). Despite
their success, there are two main limitations for such meth-
ods to effectively work on tasks with partial observability.
First, most of the well-adopted exploration models, such as
the Intrinsic Curiosity Module (ICM) (Pathak et al. 2017)
and Random Network Distillation (RND) (Burda et al. 2019)
develop their intrinsic reward systems upon the local obser-
vations. However, only considering the local observations is
clearly insufficient to infer the novelty over the true world
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Figure 1: Partial observations derived from the my way home
scenario in ViZDoom. The frames in each column correspond
to a pair of partially observed states with visually similar par-
tial observations but essentially different MDP states (i.e., the
true MDP state would correspond to the actual coordinates
of the agent’s map location).

state in tasks with partial observability. For instance, in the
navigation scenario shown in Figure 1, the local observations
would look no different from each other at many places in
the map even though their underlying true world states are
essentially different. Therefore, it is crucial to develop a re-
ward shaping method with a sequential inference procedure
for the partially observable domains, so that the novelty or
surprise of the agent could be inferred with a greater amount
of evidence. Second, many well-adopted exploration models
infer intrinsic rewards from the error of some simple down-
stream prediction tasks, such as self-prediction or one-step
look-ahead, which might restrict the expressiveness of their
inferred intrinsic reward scores. The reason is that in such
self or one-step dynamics prediction tasks, the input and out-
put states often convey great similarity, which makes those
works sometimes fail to derive an expressive novelty mea-
sure to truly distinguish the novel states from the state space
experienced by the agent.

In this paper, we propose a novel Sequential Generative
Exploration Model (SGEM) to overcome the aforementioned
limitations of the conventional reward shaping approaches
in deep reinforcement learning domains. Overall, SGEM
has the following three distinguished properties compared
to most of the existing exploration approaches. First, SGEM
aims at inferring the intrinsic reward signals from the novelty
or surprise of the agent over its true world state. Therefore,
SGEM adopts a sequential inference procedure which could
effectively synthesize the past transitions for the agent to
infer its intrinsic reward. Second, SGEM incorporates a multi-
step dynamics prediction task to infer the intrinsic reward.
By taking into account of the time abstraction during the
forward dynamics prediction task, the method scales up the
difficulty of the forward dynamics prediction task and thus
helps the agent to derive more expressive intrinsic reward
signals. Third, SGEM is general in its form and could be
applied to most partially observable policy learning tasks
that come with a high dimensional state space. Moreover, it
consists of modeling flexibility to certain extent such that
some of its modules could concurrently work with other
exploration models, e.g., we integrate a RND module into
our proposed generative model, which serves as a target
projection function to obtain a compact state representation.

Related Work
Curiosity-driven exploration has been studied extensively
in the reinforcement learning literature (Oudeyer and Ka-
plan 2007; Oudeyer, Kaplan, and Hafner 2007). In recent
years, research on intrinsic exploration for deep reinforce-
ment learning has developed various different measures to
model the agent’s curiosity, such as counts (Choi et al. 2019;
Tang et al. 2017), pseudo-counts (Bellemare et al. 2016; Os-
trovski et al. 2017), prediction-error (Stadie, Levine, and
Abbeel 2015; Achiam and Sastry 2017; Yu, Lyu, and Tsang
2020) and information gain (Houthooft et al. 2016; Nikolov
et al. 2019). For the tasks with partial observability, one
prominent line of curiosity-driven exploration methods fall
to the prediction-error-based category. Pathak et al. (2017)
propose a forward-backward dynamics model and use the
prediction loss of the forward model to infer the state cu-
riosity. Oh and Cavallaro (2019) introduce a triplet ranking
loss to push the prediction output of the forward dynamics
model to be far from the output generated by taking some
alternative actions. Apart from such prediction-error-based
approaches, recently, Savinov et al. (2019) also introduce
an associative memory-based approach. The method forms
a memory of novel states and trains a comparator network
to model the reachability between visited states to the novel
states to compute the intrinsic reward based on the reachabil-
ity score. Despite their effectiveness, all the aforementioned
approaches do not explicitly consider to develop the intrin-
sic reward model for agents with partial observability in a
sequential manner and therefore such methods could hardly
infer the novelty of agent over its true world state. Our pro-
posed exploration method leverages a sequential inference
procedure to infer the curiosity of agent over a state that
is closer to its true world state. To this end, it sequentially
processes the historical transitions in an episode to infer the
intrinsic reward of a state.

Our work is also related to the works on sequential dynam-
ics models for reinforcement learning. In (Oh et al. 2015;
Chiappa et al. 2017; Hafner et al. 2019), recurrent dynamics
models are introduced to generate realistic future states for
model-based planning. In (Ke et al. 2019), a sequential dy-
namics model is trained to generate future states and actions
for model-based control. In (Ha and Schmidhuber 2018; Gre-
gor et al. 2019), VAE models are utilized to learn high-level
representations to be used as the input for policy learning
in partially observable domains. In (Lee et al. 2020), a la-
tent soft actor-critic algorithm is proposed which combines
the process of representation learning with policy training.
While most of the aforementioned works focus on deriving
realistic future predictions from the dynamics model, our
work performs dynamics prediction with the sequential gen-
erative model for curiosity-driven exploration. Furthermore,
most of the existing dynamics models formulate the task as
one-step look-ahead or unsupervised prediction, whereas we
consider multi-step forward dynamics prediction to derive
more expressive intrinsic rewards. The work from Gregor
et al. (2019) also introduces a multi-step dynamics prediction
loss when training a sequential-VAE model. However, they
focus on the task of unsupervised learning and their method
works with a different inference structure from ours.
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Background
Partially Observable Markov Decision Processes (POMDPs)
generalize MDPs by learning under partial observability. For-
mally, a POMDP is defined as a tuple 〈S,A,O, T ,Z,R〉,
where S, O and A define the state space, the observation
space and the action space, respectively. At each step, the
agent receives an observation ot ∈ O and determines an
action to take based on a policy function π(·). The transi-
tions of the POMDP are defined on the state space of the
underlying MDP: T (s,a, s′) = p(s′|s,a) such that p(s′|s,a)
is the probability of transiting to state s′ after taking action
a in state s. Z(s,a,o) = p(o|s,a) specifies the probability
of receiving observation o when taking action a in state s.
The reward functionR(s,a) defines the real-valued environ-
ment reward obtained by the agent when taking action a in
state s. Under partial observability, the state space S is not
directly accessible by the agent and the agent performs de-
cision making by forming a belief state bt which is updated
upon receiving new observations or rewards. In this work, we
consider inferring the belief state by filtering the entire past
partial observations of the agent, i.e., (o0,o1, ...,ot). The
goal of reinforcement learning is to optimize a policy π(bt)
which outputs an action distribution given each belief state
bt, with the objective of maximizing the discounted cumu-
lative rewards collected from each episode, i.e.,

∑∞
t=0 γ

trt,
where γ ∈ [0, 1) is a real-valued discount factor.

Intrinsic Exploration Framework
In this paper, our primary focus is on tasks with partial
observations where the observations are defined as high-
dimensional inputs (i.e., images) and the external rewards
rt are sparse, i.e., zero for most of the time. To tackle such
challenge, we define a general intrinsic reward function from
SGEM to evaluate the novelty or surprise of the agent over its
experience in the world, so as to issue a step-wise exploration
reward bonus to the agent. We illustrate the main components
for SGEM in Figure 2. The exploration framework consists of
three main components: an inference network, an observation
decoder and a target model which we define in the form of
random network distillation (RND). Each of the components
is modeled as a neural network-based function.

We formulate a multi-step dynamics prediction task with
SGEM to derive an expressive intrinsic reward measure.
Specifically, to generate a state for step t+ δ, the inference
model for SGEM filters over the past transition sequence
composed by a state observation sequence o1:t and an ac-
tion sequence at:t+δ−1 to generate a latent state zt+δ , where
o1:t = (o1, ...,ot) and at:t+δ−1 = (at, ..., at+δ−1) repre-
sent a sequence of partial observations and actions, respec-
tively. SGEM is essentially performing a multi-step forward
dynamics prediction task to generate latent state zt+δ , consid-
ering that the inference model filters the observation sequence
only up to time t and the source of information for task dy-
namics over the subsequent time span of δ comes from the
action sequence only. As such, the inference structure for
our proposed model is different from those conventional se-
quential state space models (e.g., (Gregor et al. 2019; Hafner
et al. 2019; Ke et al. 2019)), since their inference models are
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Figure 2: An overview to the procedure of inferring intrinsic
reward bonus with SGEM.

mostly defined over one-step look-ahead with an autoregres-
sive nature.

Given the latent state zt+δ , the decoder model for SGEM
decodes a state for time t + δ. Rather than generating the
observation at its original high dimensional representation
space (i.e., image pixels), we utilize RND to form an effec-
tive target embedding for the observations, which projects
the high dimensional observation ot+δ into an embedding
space characterized by some random projection functions.
By utilizing RND, we could reduce considerable amount of
computational cost since the size of target embedding derived
from RND is often much smaller than the original high dimen-
sional observations. At the same time, our method leverages
the advantage of RND to derive an effective novelty measure
which quantifies the novelty reward as the uncertainty of
distilling a randomly drawn function from its prior (Osband,
Aslanides, and Cassirer 2018).

Sequential Generative Model
Generally, sequential generative models are hard to train and
therefore we resort to variational inference. Overall, our task
of interest is to learn a distribution to generate a sequence of
observation embeddings (xδ+1, ...,xT+δ), given the partial
observations o1:T and actions a1:T+δ−1, where xt denotes
the target embedding for ot. To generate xδ+1:T+δ , we con-
sider the following probabilistic model:

pθ(xδ+1:T+δ, zδ+1:T+δ) =
T∏
t=1

pθ(xt+δ|zt+δ) p(zt+δ),

where zδ+1:T+δ denote a set of latent states for generating
the observation embeddings from step t = δ + 1 to T + δ,
p(zt+δ) is the prior distribution and θ is the parameter for
the decoder. For simplicity we assume z≤δ = 0. All the con-
ditional distributions and prior distributions are represented
as simple distributions, e.g., Gaussian distributions. Even
though each single distribution is uni-modal, marginalizing
over all the sequence of latent variables would make them
highly multi-modal, and therefore suffice to model the latent
distribution in our target applications.

To generate xδ+1:T+δ , SGEM learns a latent state distribu-
tion. We define a posterior distribution qφ(·) parameterized
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Figure 3: The backbone for the inference model and the
decoder model in SGEM. The inference model performs
a multi-step dynamics prediction task to generate a latent
code zt+δ given the observation sequence o1:t and an action
sequence at:t+δ−1. Then the generative model decodes the
latent state to predict the future observation, where the target
for prediction is modeled as the random state embedding
projected by RND. For ease of understanding, we only show
the inference and generative procedure for a single state. The
model could be straightforwardly unrolled to generate the
following states.

by φ as follows,

qφ(zδ+1:T+δ|o1:T , a1:T+δ−1) =

T∏
t=1

qφ(zt+δ|o1:t, at:t+δ−1).

As such the posterior distribution for zt+δ is derived by fil-
tering over the observations sequence o1:t and the action
sequence at:t+δ−1. In practice, the inference network for
SGEM adopts two aggregation functions foh(·) and fah (·) to
process the observations and actions in sequence, to derive
synthesized features, i.e., hot and hat+δ−1, for representing
the observation sequence and the action sequence (as illus-
trated in Figure 3). The computation of zt+δ would depend
on hot and hat+δ−1.

To train our proposed sequential generative model with the
approximate posterior, we derive the Evidence Lower Bound
(ELBO) as follows:

log pθ(xδ+1:T+δ, zδ+1:T+δ)

≥Eqφ(zδ+1:T+δ|o1:T ,a1:T+δ−1)

[ log pθ(xδ+1:T+δ, zδ+1:T+δ)

log qφ(zδ+1:T+δ|o1:T , a1:T+δ−1)

]
=Eqφ(zδ+1:T+δ|o1:T ,a1:T+δ−1)

[
log pθ(xδ+1:T+δ, zδ+1:T+δ)

]
−KL

(
qφ(zδ+1:T+δ |o1:T , a1:T+δ−1) ‖ p (zδ+1:T+δ)

)
By leveraging the temporal structure of the inference network
and the decoder, we further break down the ELBO in the
following manner to form the loss LSGEM for optimizing
our proposed SGEM model:

LSGEM = −
T∑
t=1

Eqφ(zt+δ|o1:t,at:t+δ−1)log pθ(xt+δ|zt+δ)

+ βKL
(
qφ(zt+δ|o1:t,at:t+δ−1) ‖ p (zt+δ)

)
,

Algorithm 1 Policy Training with SGEM

1: Input: learning rate α > 0, hyperparameters λ, β, δ
2: Initialize RL policy parameters ω, SGEM parameters θ,
φ and a RND function f∗(·).

3: for e = 1 to MAXITER do
4: Reset the environment and receive o0.
5: Set transition buffer to Ø.
6: for t = 1 to TIMEOUT do
7: Sample an action at ∼ πω(o0:t−1).
8: Step the environment: ot, rt, term ∼ env(at).
9: Save the transition to the buffer.

10: if t =BUFFERSIZE or term then
11: Compute r+ for the states with index > δ follow-

ing Eq (1).
12: Update ω, θ, φ following Eq (2).
13: Remove transitions with index > δ from buffer.
14: end if
15: if term then break
16: end for
17: end for

where β > 0 is the weight for the KL-divergence term.

Policy Training with Intrinsic Rewards
We infer the intrinsic reward for a state from the error of
performing multi-step dynamics prediction with SGEM. In
practice, we formulate the intrinsic reward in the form of the
MSE loss. At step t, the reward bonus or curiosity score is
computed in the following manner:

xt = f∗(ot), x̂t = fSGEM(o1:t−δ,at−δ:t−1; θ, φ),

r+t =
η

2
||x̂t − xt||22, (1)

where x̂t denotes the predicted embedding generated by the
SGEM function fSGEM(·), xt denotes the target embedding
generated by the RND function f∗(·) and r+t denotes the
intrinsic reward. η ≥ 0 is a positive weight to scale the
intrinsic reward.

The intrinsic reward module can be trained simultaneously
with the reinforcement learning objective. The compound
objective function for training reinforcement learning policy
with our proposed curiosity-driven exploration becomes:

max
θ,φ,ω

Eπω(oot ;ω)

[∑
t

(rt + r+t )− λLSGEM

]
, (2)

where θ, φ and ω are the parameters for the observation
decoder, posterior inference model and the policy model
respectively, and λ ≥ 0 is a weight to balance the objectives
for reward maximization and that for training SGEM. The
policy model and SGEM could partially share the observation
embedding parameters. The complete algorithm for policy
training with SGEM is shown in Algorithm 1.

Implementation with a Dual-LSTM Architecture
In order to derive high-quality features to summarize the
observation and action sequences, we present an effective
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Figure 4: The 3D navigation task domains for empirical evaluation: (1) an example of partially observable frame from ViZDoom;
(2) the specifications of spawn/goal location for the ViZDoom scenarios; (3/4) an example of partially observable frame from the
apple-distractions/goal-exploration task in DeepMind Lab.

way to implement the posterior inference network in SGEM
with a dual-LSTM architecture. To predict the latent state
zt for step t, we denote the input observation sequence and
action sequence to the inference network as Ot = o1:t−δ
and At = at−δ:t−δ−1, respectively. Specifically, each partial
observation ot is represented as a 3D image frame with width
m, height n and channel c, i.e., ot ∈Rm×n×c. Each action
is modeled as a 1-hot encoding vector at∈R|A|, where |A|
denotes the size of the action space. Given the sequences
Ot and At, the inference network first adopts an embedding
module fe(·) parameterized by θe = {θoe , θae} to process
each observation and action in the sequences as follows,

φO
t = fe(Ot; θEo) and φA

t = fe(At; θEa), (3)
where θoe and θae denote the parameters for the observation
embedding function and the action embedding function. Next,
we adopt LSTM as the aggregation function to synthesize
both sequences and generate synthesized observation/action
embeddings,

[hot , c
o
t ] = LSTMo

(
φO
t ,h

o
t−1, c

o
t−1

)
,

[hat , c
a
t ] = LSTMa

(
φA
t ,h

a
t−1, c

a
t−1

)
,

(4)

where hot ∈ Rl and hat ∈ Rl represent the latent features
encoded from the observation sequence and action sequence.
For simplicity, we assume hot and hat have the same dimen-
sions. cot and cat denote the cell output for the two LSTM
modules. A multiplicative interactive modeling is adopted
to synthesize the observation sequence feature hot and the
action sequence feature hat to derive a multiplicative latent
code hit, and the belief state bt which summarizes evidence
for dynamics prediction is formed as follows:

bt = [hot ,h
a
t ,h

i
t], and hit = hot � hat (5)

where � denotes element-wise multiplicative interaction.
Then the latent code is sampled from a Gaussian distribution
with its mean and variance generated by projecting bt with a
fully connected layer fp(·):

zt ∼ N (µt,σt), µt,σt = fp(bt). (6)

Experiments
Experimental Setup
Task Domains For empirical evaluation, we adopt
three 3D navigation tasks with first-person view: 1)

‘DoomMyWayHome-v0’ from ViZDoom (Kempka et al. 2016);
2) ‘Stairway to Melon’ from DeepMind Lab (Beattie et al.
2016); 3) ‘Explore Goal Locations’ from DeepMind Lab.
Specifically, ‘DoomMyWayHome-v0’ allows us to test the al-
gorithms in scenarios with varying degrees of reward sparsity,
‘Stairway to Melon’ allows us to test the algorithms in scenar-
ios with reward distractions, and ‘Explore Goal Locations’
allows us to test the algorithms in scenarios with procedurally
generated maze layout and random goal locations. Source
code for SGEM is available in tensorflow where the details
on implementation and hyperparameter settings for each task
domain are also available.

Baseline Methods For fair comparison, we adopt ‘LSTM-
A3C’ as the RL algorithm for all the methods. In the exper-
iments, we compare with the vanilla ‘LSTM-A3C’ as well
as the following intrinsic exploration baselines: 1) the In-
trinsic Curiosity Module (Pathak et al. 2017), denoted as
‘ICM’; 2) Episodic Curiosity through reachability (Savinov
et al. 2019), denoted as ‘EC’; 3) the Random Network Dis-
tillation model (Burda et al. 2019), denoted as ‘RND’. Our
proposed Sequence-level Generative Exploration Module is
denoted as ‘SGEM’. SGEM adopts action sequence length
of 6 for the ViZDoom tasks and 3 for DeepMind Lab tasks.
The baseline ‘EC’ needs to pretrain the comparitor model
with environment transitions so we shift the corresponding
learning curves by the budgets of pretraining frames (i.e.,
0.6M) in the results, following the original paper (Savinov
et al. 2019).

Evaluation with Varying Reward Sparsity
Our first empirical domain is a navigation task in the
‘DoomMyWayHome-v0’ scenario from ViZDoom. The task
consists of a static maze layout and a fixed goal location. At
the start of each episode, the agent spawns from one of the
17 spawning locations, as shown in Figure 4. In this domain,
we adopt three different setups with varying degree of reward
sparsity, i.e., dense, sparse, and very sparse. Under the dense
setting, the agent spawns at one randomly selected location
from the 17 locations and it is relatively easy to succeed in
navigation. Under the sparse and very sparse settings, the
agent spawns at a fixed location far away from the goal. The
environment issues a positive reward of +1 to the agent when
reaching the goal. Otherwise, the rewards are 0. The episode
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Figure 5: Learning curves measured in terms of the navigation success ratio in ViZDoom for the three testing scenarios
(left-to-right): 1) dense; 2) sparse; 3) very sparse. We run each method for 6 times.

terminates when the agent reaches the goal location or the
episode length exceeds the time limit of 525× 4-repeated
environment steps.

We show the training curves measured in terms of navi-
gation success ratio in Figure 5. The results from Figure 5
depicts that as the rewards go sparser, the navigation would
become more challenging. The vanilla ‘LSTM-A3C’ algo-
rithm could not progress at all under the sparse and very
sparse settings. ‘ICM’ could not reach 100% success ratio
under the sparse and very sparse settings, and so does ‘EC’
under the very sparse setting. Our proposed method consis-
tently achieves 100% success ratio across all the tasks with
varying reward sparsity. The detailed convergence scores are
shown in Table 1.

Our proposed solution also demonstrates significant ad-
vantage in terms of convergence speed. Though the reward
sparsity varies, our method could quickly reach 100% suc-
cess ratio in all the scenarios. However, the convergence
speeds of ‘ICM’, ‘EC’ and ‘RND’ apparently degrade with
sparser rewards. Also, we notice that the associative memory-
based method (i.e., ‘EC’) takes much longer time to converge
compared to the prediction-error based baselines ‘RND’ and
‘SGEM’. Moreover, ‘EC’ requires to pre-train the compara-
tor module in some task domains such as ViZDoom, which
would consume a considerable amount of pre-training data,
but the other methods ‘ICM’ and ‘RND’ and ‘SGEM’ do
not require such pre-training. Overall, our proposed method
could converge to 100% success ratio on average 3.1x as fast
as ‘ICM’ and 2.0x compared to ‘RND’ when measured in

dense sparse very sparse
LSTM-A3C 100% 0.0% 0.0%
ICM 100% 66.7% 68.6%
EC 100% 100% 75.5%
RND 100% 100% 100%
SGEM (ours) 100% 100% 100%

Table 1: Performance scores for the three maps in ViZDoom
evaluated in terms of navigation success ratio upon 10m steps.

terms of training steps required to fully learn the task.

Evaluation with Varying Maze Layout and Goal
Location
Our second empirical evaluation domain is a navigation task
with procedurally generated maze layout and randomly cho-
sen goal locations. We adopt the ‘Explore Goal Locations’
level script from DeepMind Lab. At the start of each episode,
the agent spawns at a random location and searches for a ran-
domly defined goal location within the time limit of 1350×
4-repeated steps. Each time the agent reaches the goal, it re-
ceives a reward of +10 and is spawned into another random
location to search for the next random goal. The maze layout
is procedurally generated at the start of each episode. This
domain challenges the algorithms to derive general naviga-
tion behavior instead of relying on remembering the past
trajectories.

We show the results with an environment interaction bud-
get of 1.7M 4-repeated steps in Figure 6. In this task, the
baseline ‘EC’ consumes 0.6M pretraining frames (following
the setting in the released code), which makes it less feasible
for the current task, as our method could obtain reasonable
scores with significantly less training frames. Also note that
in this challenging task with procedurally generated maze,
vanilla ‘LSTM-A3C’ model without intrinsic curiosity ex-
ploration could only converge to an inferior performance
standard of around 10. Our proposed method could score

Figure 6: Learning curves for the procedurally generated goal
searching task in DeepMind Lab.
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Figure 7: Learning curves for the ‘Stairway to Melon’ task
in DeepMind Lab. Up: cumulative episode reward; Down:
navigation success ratio.

> 20 with less than 1.3M training steps and achieve perfor-
mance standard significantly higher than ‘ICM’ and ‘RND’.
This demonstrates that our proposed reward shaping method
could work well in challenging partially observable tasks
with procedurally changing content.

Evaluation with Reward Distractions
Our third empirical evaluation engages a cognitively com-
plex task with reward distraction. We adopt the ‘Stairway
to Melon’ level script from DeepMind Lab. In this task, the
agent can follow either two corridors: one of them leads to a
dead end, but has multiple apples along the way, collecting
which the agent would receive a small positive reward of
+1; the other corridor consists of one lemon which gives the
agent a negative reward of −1, but after passing the lemon,
there are stairs that lead to the navigation goal location up-
stairs indicated by a melon. Collecting the melon makes the
agent succeed in navigation and receive a reward of +20. The
episode terminates when the agent reaches the goal location
or the episode length exceeds the time limit which is specified
as 525× 4-repeated steps.

The results are shown in Figure 7. We demonstrate both
the cumulative episode reward and the success ratio for nav-
igation. Due to the reward distractions, the learning curves
for each approach demonstrate instability with ubiquitous
glitches. The vanilla ‘LSTM-A3C’ could only converge to an
inferior navigation success ratio of < 50%, and all the other
baselines progress slowly. Notably, our proposed method
could fast grasp the navigation behavior under the reward
distraction scenario, i.e., it could achieve a navigation success

Figure 8: Results for the ablation study evaluated on the very
sparse scenario in ViZDoom.

ratio of> 80% with less than 0.2M environment interactions,
which is at least 3x as fast as the compared baselines.

Ablation Study

We present an ablation study on the very sparse scenario from
ViZDoom domain to demonstrate the privilege of performing
multi-step dynamics prediction in SGEM. To this end, we
compare our method which adopts a multi-step time span of
δ = 6 with a baseline method which performs one-step look-
ahead, i.e., δ = 1. The results are shown in Figure 8. Note
that in the main results for ViZDoom shown in Figure 5 (c),
some of the baselines considered by our work, i.e., ‘RND’ and
‘ICM’, are also performing one-step/self-prediction. From the
results shown in Figure 8, we notice that performing multi-
step dynamics prediction could bring noticeable privilege to
the policy learning compared to the ‘δ =1’ variant. Thus we
conclude that enlarging the time span of the prediction task
might help to derive more expressive intrinsic rewards and
result in more efficient policy training.

Conclusions

In this paper, we tackle the challenge of improving the policy
training performance in sparse rewarded partially observ-
able domains. We propose a new exploration method which
performs curiosity-driven reward shaping, termed SGEM.
SGEM infers intrinsic rewards with a sequential inference
network and it could derive expressive exploration rewards
by considering a forward dynamics prediction task with an
increased time span for prediction. In the empirical evalu-
ation, we demonstrate our proposed method SGEM could
outperform various state-of-the-art intrinsic exploration mod-
els in challenging partially observable navigation domains.
Potential directions for future work include refining the pre-
diction task being considered by SGEM to infer the intrinsic
exploration reward, such as adopting an alternative inference
network structure or formulating different prediction task.
Also, it is worth investigating the performance of SGEM
when combined with different reinforcement learning algo-
rithms as well as when the method is applied to different
application domains with partial observability.
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